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ABSTRACT

Large space structures are difficult to control because of the high order cf their
mathematical models. The high order mathematical model makes the use of a reduced
order model to control the structure desirable. The Karhunen-Loeve expansion along
with Galerkin's method is used to generate a reduced order model. A control algorithm
is achieved by applving linear quadratic regulator theory to the reduced order model.

The Karhunen-Loeve basis functions or mode shapes must first be found to identifyv
the reduced order model. Previous results have shown that in the limit as the structural
damping approaches zero the Karhunen-Loeve mode shapes and natural mode shapes
converge. Numerical techniques are applied to evaluate the structural damping required
for convergence. Once the Karhunen-Loeve mode shapes are determined. the reduced
order control model is applied to the full order system. The performance of various

Karhunen-Loeve models 1s compared by measuring the modal energies in the controlled

and uncontrolled modes.
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THESIS DISCLAIMER

The reader 1s cautioned that computer programs developed in this research may not
have been exercised for all cases of interest. While every effort has been made, within
the time available, to ensure that the programs are free of computational and logic er-
rors, they cannot be considered validated. Any application of these programs without

additional verification is at the risk of the user.
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I. INTRODUCTION

A. LARGE SPACE STRUCTURES

The hLightweight, flxible materials used to construct large space structures (LSS),
like a space station, are lightly damped and when disturbed will vibrate for a consider-
able amount of time. This prolonged vibration could jeopardize the structural integrity
of the structure or disturb experiments on the LSS. The purpose of this thesis is to study
the effects of controlling this structural vibration with a reduced order model, specifically

a Karhunen-Loeve reduced order model.

B. PROBLEM APPROACH

The solution of the vibration control problem requires the use of a mathematical
miodel that describes the behavior of the system in time. The space structure is modeled
as a combination of small plates of unit mass connected to form the complete structure.
The vibrational motion of these plates can be modeled as a set of coupled damped har-
monic oscillators. Using modal analvsis the mathematical model of the structure can
be decoupled to vield a set of uncoupled simultaneous second order differential
equations.

For LSS this model i1s of verv high order, making control design difficult. It is
therefore desirous to use a reduced order model (ROM) to control the structure. A
control svstem 1s designed for the LSS using the Karhunen-Loeve (reduced order) model.
The control svstem 1s then applied to the LSS after it has been disturbed by an impulse.
The performance of this svstem and a control system based on a modal model. truncated
by frequency. are compared.

The LSS used in this thesis is a dual keel space station, see Figure | on page 2. A
mathematical model of this space station is provided courtesy of McDonnel Douglas
Astronautics. A computer simulation of this space station is used to determine the ef-
fectiveness of the control svstem. Karhunen-Loeve (reduced order) models of increasing
size are simulated and the modal energies are calculated and used to determine the rela-
tive effectivenzss of the control models. These results will then be compared to results

obtained for the modal model truncated by frequency.
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Figure 1. Representation of a Dual Kee] Space Station from [Ref. 1: p. 1}

C. ORGANIZATION

Chapter 11 is a statement of the mathematical model of the space station.

Chapter III discusses the Karhunen—Loeve expansion, the relationship between
the Karhunen-—Loeve mode shapes and the natural mode shapes and how a re-
duced order model can be synthesized using the Karhunen—Loeve expansion and
Galerkin's method.

Chapter 1V discusses the determination of the Karhunen-Loeve modes.

Chapter V describes the control solution and presents the control simulation re-
sults.

Chapter VI discusses the conclusions based on the simulation resuits and a re-
commended design procedure.




1. THE MATHEMATICAL MODEL

A. INTRODUCTION

Large space structures are flexible, lightly damped structures that can vibrate for a
considerable amount of time when disturbed by an external force. To efTectively control
such a svstem, a mathematical model describing the evolution of that system in time is

required.

B. THE MODAL MODEL

The space station is modeled as a combination of small plates of unit mass con-
nected to form the complete structure. This model can be visualized as a svstem of
masses connected by springs and dashpots (the springs representing the stifTness factor
and the dashpots representing the damping factor). The displacement of the masses can
be described by a second order matrix differential equation of motion:

M) + —5/— Ki(r) + Kx(1) = F(1) (1)
where
® X is the genecralized coordinate vector

¢ M i< the diagonal system mass matrix

o —(‘-'-:- K is the structural damping term

e d i< the damping constant

® . 1s the frequency of oscillation of the system
e K i1s the svmmetric svstem stiffness matrix

e [(t)is the svstem forcing function

This equation represents a svstem of simultaneous, second order differential equations
that are coupled by the K matrix.[Ref. 1: p. 3]

This equation can be uncoupled and the system represented by a set of independent
second ordcr differential equations. This is done through the process of modal analysis
which 1s outlined " [Refs. 2, 3]. The resulting modal model consists of a set of inde-

pendent second order differential equations:

tJ

[i+dQin+Q y=x"F] (




where
® 7y is the coordinate vector or modal amplitude vector
o (=diaglo, v ... o,
e Y"=[xx, .. x] the transpose of the modal matrix or mode shape vector

¢ I is the torquing force applied at a point

Next a discrete-time equation describing the motion of the space station in terms of its
natural modes of vibration is developed. The discrete-time state equation for the ith

equation of motion is:
ZKT + 1) = O(T) ZkT) + T(D) X[ (#KT) + W(KT)] (3)

where

e Z, is a vector of the ith modal amplitude and
the 1th modal velocity

¢ (D 1s the 1ith state transition matrix

e [ is theith input vector

e X is the transpose of the ith mode shape vector

¢ [ is the control torque force vector applied at a point
¢ T is the sampling time

¢ K 1s the ume index

e W is the disturbance input

This equation is used for computer simulation of the space station and control

solution.[Ref. 1: p. 4]




1lI. APPLICATION OF THE KARHUNEN-LOEVE EXPANSION TO THE
REDUCED ORDER CONTROL OF LARGE SPACE STRUCTURES

A. INTRODUCTION

Large flexible structures, such as a space station, as a class of distributed parameter
svstems (DPS) require a finite dimensional model for control design. This model mayv
be achieved by approximating the state of the LSS using the Karhunen-Loeve (KL) ex-
pansion. The expansion is truncated to provide the finite dimensional approximation
of the state for control design. The KL model that results describes the evolution of the
approximated state of the structure.

The natural mode shapes are normally used for modeling and control of flexible
structures. The relationship between the natural mode shapes and the KL mode shapes
1s described in this chapter as well as the use of Galerkin's method. Galerkin's method
1s used to generate a reduced order model (ROM), using both the natural mode shapes

and the KL expansion.

B. THE KARHUNEN-LOEVE EXPANSION

The purpose of the KL expansion is stated by Stark and Woods [Refl. 4: p. 322].
“The idea [of the KL expansion] is to decompose a general second-order random proc-
ess 1nto an orthonormal expansion whose coefficients are uncorrelated random
variables.” The state of a large space structure (LSS), ¥(x), can be modeled as random
process since it depends on random excitations, i.e., noise from onboard machinery and
actuators. The second order moments of the LSS are proportional to the phvsical en-
ergv and therefore exist. The LSS can therefore be approximated using the KL expan-
sion [Ref. 5: p. 12]. This is done by projecting the random process onto an orthonormal
basis and truncating to N terms. The value chosen for N is a matter of “engineering
judgment”. [Ref. 5: p. 13]

The selection of the orthonormal basis is made by solving the KL eigenequation:

< R).},(.\',Z), ¢i(z) > = )'id)i(x) (4)

where
® ¢ [x)is referred to as an eigenfunction (or the KL mode shapes)

® /. is the eigenvalue and is a measure of the excitation of the ith basis function




® R, (x.2) is the correlation function of ¥(x): R, (x,2) = E[¥(x) y7(x)]

® <., «>isan inner product: < a(z),b(z) > = fnaT(z) M(z) b(z) dz

M(z) is the mass density of the structure

¢ Q is the spatial extent of the structure

The state of the LSS is approximated by:

N
Ya= ) Lbi) )
I=1

where
® . is an approximation to the state of the space structure
e [ 1s a set of coordinates found by {, = < ¢ (x), 3(x) >

® ¢ (x) 1s the ith basis function or KL mode shapes

The expansion 1s truncated by Keeping the eigenfunctions (KL mode shapes) associated
with the N\ largest eigenvalues. [Ref. 5: p. 13]

The KL expansion yvields the best approximation to the random process, i.e., mini-
mizes the expected value of the norm of the error, of any orthogonal expansion. The

approximr ation error is defined as:

o

ex) =30) = yalx) = ) L) (6)

I=N+1
IFor a proof of the optimality of the KL expansion see [Ref. 6: p. 11} or [Ref. 5: p. 13].

C. RELATIONSHIP BETWEEN THE KARHUNEN-LOEVE MODE SHAPES AND
THE NATURAL MODE SHAPES

The relationship between the KL mode shapes or KL basis functions and the natural
mode shapes is taken from Burl [Ref. 5: p. 13]. The KL mode shapes of a structure are
related to the natural mode shapes of that structure by a linear transformation repres-

enting a change of basis which can be written:

$ilx) = Zcﬁ"’ [""gr)] + szj[,,.?r)] =n"(x)e; (M




where

Ton 17,(x) 0 75(x) 0 n(x)
L ("‘)‘[ 0 m 0 Mm@ 0 ] ®)
c,T= [c,-1 cf c,~3 ] 9

and {n(x)} is the set of natural mode shapes. The state of a structure consists of a
generalized position and velocity which can be expanded in terms of the natural mode

shapes:
. | 0
Hxt) = Za,(z)["’é')] + a,(z)[ﬂj(x)] =7 (x)a(0) (10)
J=1
where
2 (D=L a) o) &) ay(n) .. ] (11)

are the coordinates and velocities of the natural mode shapes. The vectors, ¢,. can be

found by solving the equation:

oo’ (0] Qa=4c (12)

Nl o {w; 0 wis 0
Q=d1ag[[0 I:I'[O Pl o i (13)

Equations 10 and 11 give the KL mode shapes in terms of the natural mode shapes.

where

Equation 12 is an infinite dimensional eigenvalue problem that can be solved practically

by truncating it to the most significant terms.

D. REDUCED ORDER MODELING USING THE KARHUNEN-LOEVE MODES
Galerkin's method is used to produce reduced order state equations. This can be

done with either the KL modes or the natural modes.




The discrete-time state equation of a distributed parameter system is:
k) = Fy(x,k — 1)+ G flk) (14)

where
® y(x,k) is the state
¢ flk) is the input
¢ Kk is the time index
¢ F is an operator on the state space
e G is an operator from #" to the state space

e For each k, ¥(x,k) € the state space, fik) € £~

A finite dimensional approximation to this equation can be obtained using Galerkin’s
method

P y(x,k) = (P, F P) y(xk = 1) + P, G u(k) (15)

where P, can be written in terms of a basis [, | i=1,2,...,n]

P+)= D nx) < mfx)., +> (16)
i=1

The KL mode shapes (basis functions) can be used in the above equations and the KL
model results. The natural mode shapes can be used in the above equations, which is
equivalent to truncating the modal equations, producing the modal model.[Ref. 5 : p.
13]
E. SUMMARY

The KL expansion can be used to approximate the state of a LSS. This is done by
projection of the state, which is modeled as a random process, onto an orthonormal
basis function. The basis function can be found by solving the KL eigenequation. These
KL basis functions will vield the best approximation to the state of the LSS. Then using
Galerkin's method a reduced order model of the LSS is produced. This reduced order

model is used to generate a control which is applied to the entire system.




IV. DETERMINATION OF THE KARHUNEN-LOEVE BASIS
FUNCTIONS

A. INTRODUCTION

The KL basis functions (or mode shapes) can be determined by solving the
eigenequation 12. This is a tedious and laborious processes. It can be shown that for
lightly damped structures the KL mode shapes can be determined from the open loop
response by ordering the natural mode shapes in order of decreasing modal energies.

The KL mode shapes were calculated using the KL mode program in Appendix B.
These calculations were compared to the mode shapes selected by observing the open
loop response to verify that this is a valid method of determuning the KL mode shapes.

The value of the structure’s damping factor used in the program was increased until
the KL mode shapes no longer were the same as those determined from the open loop
response. This was done to determine how large the structure’s damping factor could

be and still have the KL mode shapes converge to the natural mode shapes.

B. NUMERICAL DETERMINATION OF THE KARHUNEN-LOEVE MODE
SHAPES

The KL mode shapes are found by determining the eigenvalues and eigenvectors
(equation 12) of the covariance matrix E[e,(7) a(r)]. This is an infinite dimensional
matrix which is truncated to a finite dimensional square matrix. There are threc terms
in ELa(1) 27(1)]. where o(!) is defined by equation 11. The first of these terms is com-

puted. for a white noise input

ELeyt) o,(t) ] = J hy(7) hy()cr (17)
0
where h(t) is the impulse response for o,(t) [Ref. 6: p. 66]. The impulse response is given
bu:

bai ’

hr) = ——=2== 7 sin(wyy/1 =" 1) (18)

where




® b, is the modal slope in the x direction

® is the damping coeflicient; y = % 1s a constant

® o, is the natural frequency

Performing the integration in equation 17 produces the result:

ELot) 2) ] = K; Kj[ 2[a2z:. b2] B 2[a2‘-1+ Cz] ] )
where
. K = bf"-"
* a=7" w(:_.)qij)'\;i}a— 4
* b=ow, . 1-7 _wo\'—l_—}.z
° c=~m\‘l—‘/ '4”(‘)0,'\1 "

The other terms in E[a(t) o7(t)] can be found in a similar way. They are:

. —_ > b C
E[sz'([) aj(t)] = I\i Kj Li [ 2[82 + bz:l + 2[&2 + C2] :I

(20)
- K;K; M; a_____ a ]
Y ‘li 2[az+b‘] 2[a2+cz]
and
ELa () 5(1)] =K, K LLa—-LMb—-LMb+MMa
{ / [Vl 2[a2+b2] )
(21
LiLja - Ll‘\ljc — ‘\11‘\'1ja
+ - -
2[a’ +¢*]
where
* L,=w, 17

. NL_I’:.'/wa,,J

Equations 19, 20, and 21 specify the eigenvalue problem equation 12.
The eigensolution specifies the transformation from the natural mode shapes to the
KL mode shapes. This finite dimensional eigenvalue problem is solved and the KL mode

shapes are approximated as a linear combination of the first fifty (flexible} natural mode

10




shapes. The program in Appendix B computes the KL mode shapes by solving the

eigenvalue problem equation 12.

C. EMPIRICAL DETERMINATION OF THE KARHUNEN-LOEVE MODE
SHAPES

The numerical computation of the KL mode shapes is difficult. Solving the
eigenvalue problem requires the determination of the impulse response and solving for
all the terms in the covariance matrix E[a(t) o(t)]. It turns out that, in the limit as the
damping factor of the structure approaches zero, the KL mode shapes converge to the
natural mode shapes [Ref. 7].

If the modal energies for the open loop response are computed and the mode shapes
ordered by decreasing modal energy, these mode shapes should be the same as those

computed numericallyv. The output of the system, v, 1s defined:

- -
w7 0 0 0
3 0 1 K] 0 0 x5
: = . . .o : : : (22)
Js6 0 0 eee wse gl| X5
0 0 0 1
- -
where y, € #* and
ETith Modal Energs] = ET |, I°]. (23)
The energy, given in equation 23 can be written [Ref. § ]
29 _ % 2
ELIs 1= Wdoier (24)
0

where A, 1s the response of y, due to an impulse applied at the disturbance input (node
69 or 55). Equation 24 is evaluated using computer simulation. The mode shapes found
are compared to those determined numerically for noise input at node 69 or node 53, see

Table 1 on page 12.

11




Table 1.

DETERMINATION OF

THE

KARHUNEN-LOEVE MODE SHAPES

FIRST

FIFTY

Karhunen-Loeve
mode shapes deter-
mined from the open
loop response.

Karhunen-Loeve
mode shapes numer-
ically calculated.

Noise input Location:

Node 83 Node 69 Node 35 | Node 69
40 34 40 34
43 31 43 Sl
7 3] 7 31
17 52 17 52
28 36 28 36
13 7 15 7
44 20 44 30
33 28 35 28
39 48 39 48
33 26 33 26
3] 33 41 33
3! S0 31 S0
42 135 42 13
45 33 45 s3
s2 41 53 41
48 36 48 36
11 44 11 44
36 33 36 53
26 33 26 33
21 34 21 34
8 23 ] 23
16 37 16 37
38 38 38 38
29 46 29 46
30 27 30 27
20 42 30 43
23 40 23 40
19 23 19 23
22 21 32 21
23 16 23 16
S1 8 51 8
27 43 27 43
22 42 22 42
7 11 37 11
20 47 20 47
10 49 10 49
32 18 32 18
33 20 33 20
9 29 46 29
46 10 49 10
49 24 9 24
34 7 34 17
36 39 36 19
24 22 24 22
sS4 32 54 32
13 9 13 9
18 13 18 13
47 14 47 14
14 19 14 19
12 12 12 12

12
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Table 1 shows that the mode shapes are the same. Therefore, the KL mode shapes can
be determined from the open loop response when the structural damping factor is suffi-
cientlv small. In the case of the space station simulated in this thesis a value of 0.001
was used. The next question is. how big can the damping factor of the structure be be-
fore the KL mode shapes fail to converge to the natural mode shapes?
I. Required Magnitude of the Damping Factor for Convergence
When the structural damping factor is small enough, the eigenvectors solved for

in equation 12 approximate the natural basis
T -
e, =[100 ..] (23)
or
el =[0100 ..] (26)

etc.: one element is unity and the other elements are zero. When these vectors are sub-
stituted into equation 7 it is easy to see that the KL mode shapes are the natural mode
shapes. If the damping factor is increased. at some value the eigenvectors have more
than one non-zero element and the KL mode shapes become a linear combination of
natural mode shapes.

The damping factor was increased successively by a factor of two from a starting
value of 0.0005. The norm of the error (or error norm) is used as a means of measuring
how closely the eigenvectors obtained from the KL mode program approach the ideal

of equation 23. The error norm is defined as follows:

50
“ !1 _ .. ] _ _ (1_\)2+ 2 (.).,)
Ely = num?xuml ¢l = X X; 27
1]
i=2
where

T _ R . . <
=[x X %3 o X o Xso] (28)
and for simplicity X, is assumed to be positive and the largest component of ¢,. Equation

27 can be simplified to
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lele= [1-2x,+ Exf (29)

i=]

Since the eigenvectors are normalized,

and substituting equation 30 into equation 29 vields
fele=x2(=x%) (31

a. Results
The norm of the error. ¢, and the natural mode shape sequence obtained
from the KL mode program were used to determine how large the damping factor could
be and still have the KL mode shapes and natural mode shapes converge. The error
norm 1s presented graphically for each KL mode; all cases are for disturbance torques

due to actuator noise. The cases presented are:

¢ Figure 2 on page 16: for a damping factor of 0.0005 all but two KL modes have
an error norm below 0.2. The natural mode sequence is as in Table | on page 12.

® Figure 3 on page 17; for a damping factor of 0.001 nearly 74 percent of the KL
modes have an error norm of 0.2 or below, the natural mode sequence is presented
in Table | on page 12. The natural mode shapes are a good approximation of the
KL mode shapes.

® Tigure 4 on page 18; for a damping factor of 0.002 only 46 percent of the KL
modes have an error norm at or below 0.2, and the natural mode sequence no
longer conforms to that in Table 1 on page 12, i.e., the KL modes and natural
modes are not converging.

e Figure 5 on page 19; for a damping factor of 0.005 onlyv 28 percent of the KL
modes have an error norm of 0.2 or less and the KL modes and the natural modes
are more divergent.

b. Conclusion
If the damping factor is greater than 0.001 the natural mode shapes are not
a good approximation of the KL mode shapes. The convergence criteria is that the
norm of the error, for 50 percent of the KL modes or greater, is more than 0.2. The

value for the damping factor used in the space station simulations as noted in previous




chapters was 0.001. The assumption that the KL mode shapes and natural mode shapes
converge is valid for this damping factor and determining the KL modes from the modal

energies 1s a good approximation.
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V. CONTROL SOLUTION

A. INTRODUCTION

The response of the space station to disturbance and control inputs is simulated
using the modal model discussed in Chapter I1. The Fortran program that simulates this
model was written bv Preston [Ref. 1: p. 47], and is used in this thesis with minor mod-
ification, (see Appendix A). The objective of the simulation is to determine the svstem
response to disturbances applied at modes 6% and 35 (see Figure 6) on the structure,
using increasing sizes of KL models (i.e., 5, 10, 20 modes). The response of the system
1s depicted graphically by displaying the energy in each mode in english units of inch—

pounds (in—lbs).

-
69
) CMGs
55

| Alpha
Joint

¥ X

/ z

Figure 6. Disturbance Locations
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B. FULL ORDER SPACE STATION MODEL

The plant being controlled in this thesis, as stated in Chapter I, is a preliminarv
version of the NASA dual keel space station. NASTRAN was used to generate the first
fifty fleaibie modes (starting with mode seven). The modal model that forms the full

order model is composed of these flexible modes:

0 0
X7 - CL)?; - dw? e 0 0 X7
Xs6 E) 0 ) 0 ; Xs6
] 0 0 —wgf, — dwsg
_ - - (32)
0 0

Gsolre)  Pselpn)
where

[modal amplitude] 5
X, = €9

modal velocity (33)

and
¢ o, 1s the natural frequency of the ith mode
¢ d = 0.001 i1s the damping coefficient

® ue A is the control input torques from three orthogonally oriented control mo-
ment gyros

e we X is a random, white noise disturbance input (three orthogonal disturbance
torques)

* ¢(p)e A 1s the modal slopes at p
® p. is the location of the control moment gyros (node 69 on Figure 6 on page 20)

e p.is the location of the disturbance input (either the control moment gyro location,
node 69, or the alpha joint. node 53, as seen in Figure 6 on page 20).




This model is used as the full order model in the simulation of the space station. How-
ever, it is itself a reduced order model since the “infinite” number of vibrational modes
of the structure are truncated to fifty.

It is assumed that perfect modal amplitude and modal velocity information is avail-
able. This assumption of perfect sensor information is not realistic, but isolates the ef-

fect of modal truncation on control algorithm synthesis.

C. THE REDUCED ORDER MODEL

The reduced order model of the space station is obtained by truncating modes. The
criteria for truncating modes is either the modal frequency or the Karhunen-Loeve or-
dering (the KL ordering found in the previous chapter to be equivalent to an ordering

based on the energy measured during open loop excitation).

D. PERFORMANCE FUNCTION AND OPTIMAL CONTROL

The full-order model and a reduced order model have been established. Next, a
mathematical expression of svstem performance is required. The performance function,
J. stated here is developed in detail in [Ref. 1: p. 10 ]. J consists of the total energy in

the modeled modes plus a control energy term:

wd 0 0 ¢ —]
0 1 see (.) 0 X7
J= [-\’7T e X : O . E s ru'u (34)
0 0 ) wfm ax 0O Yimax
0o 0 0o 1

where

¢ imax is the number of modes in the reduced order model

e r=10-"is a weighting coefficient on the control energy term selected to vield time

constants on controlled modes of approximately 30 seconds.

Vibration damping is achieved by application of steady state, linear quadratic regulator
theory {Ref. 9] to the KL (reduced order) model. The control torque vector, u(k), is the
product of an optimal gain matrix, L, and the time varying state matrix, Z (equation 3).
The L matrix is found by solution of the Ricatti equations to minimize the performance

function. J, {Ref. 1: p. 12].

o
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E. SIMULATION RESULTS

The space station was simulated and the modal energies calculated for disturbance
inputs applied at nodes 69 and 35 as shown in Figure 6 on page 20. The contrc. svstem
consists of KL (reduced order) models of five, ten or twenty modes. The data is pre-
sented graphically as energy in each of the modes. The open loop response is included
for comparison except where the difference in scale precludes it. The closed loop re-
sponse for a reduced order model generated by modal truncation is included for com-
parison with the KL model. The cases presented are:

® Open loop (no control) response which identifies the reduced order model to be
used. See Figure 7 and Figure 8.

® Closed loop response for a reduced order model generated by modal truncation
with the modes ordered by natural frequency. See Figure 9 to Figure 14.

® Closed loop response for a Karhunen-Loeve (reduced order) model. The KL modes
were determined from the open loop responses. These results are shown in
Figure 15 through Figure 19.

® Closed loop response, with a KL model based on the open loop response, for the
svstem excited by the control actuators. These results are shown in Figure 20
through Figure 22.

These results are discussed in detail in Chapter VI.
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VI. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

Results supported theoretical claim that the KL mode shapes converge to the na-
tural mode shapes. For the space station example, a damping factor of 0.001 was re-
quired to make the approximation based on convergence good.

Preston discovered, see [Ref. 1: p. 46}, that truncating the modes based on natural
frequency yielded poor results. Modes with large coupling to the control system are not
modeled when natural frequency is the method of truncation. Instead modes with very
little coupling to the control svstem are modeled and in attempting to control these
modes very large control torques are generated causing large excitations in the strongly
coupled but unmodeled modes as seen in Figures 9 through 14.

The excitation of each mode depends on two factors: the natural frequency which
determines the damping and the amplitude of the mode shape which determires how
much excitation is received by each mode. The amplitude of the mode shape is the
dominate factor which is evident from the open loop responses see Figures 7 and 8.

Truncating based on the open loop response, 1.e., the Karhunen-Loeve model also
vields poor results except when it is developed from the open loop response for the case
of the disturbance torques being due to actuator noise, see Figure 8 on page 25. When
truncating modes based on the open loop response, the coupling from the noise input
1s the dominate factor in selecting the modes to include in the model. In this case modes
with large open loop excitation are controlled, but the control coupling still dominates
vielding large excitation in the unmodeled modes (see Figures 15 through 17). When the
disturbance torques are due to actuator noise, the modes with the largest open loop
excitation are also the modes with the largest control coupling and the control system
works well (see Figures 18 and 19).

The KL model based on the open loop response for disturbance torques due to
actuator noise works well when applied to the space station with a disturbance torque
applied at another location. As seen in Figures 20 through 22, the control system drives
the modeled modes close to zero without exciting other modes to a significant degree.
The problem with this configuration is that modes with large open loop excitation are

not necessarily modeled and may be left excited by the control syvstem.
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B. DESIGN PROCEDURE

This design procedure i1s based on the above conclusions and is recommended for
controlling vibration in LSS. First, the reduced order control model should be based on
the KL mode shapes determined from the open loop response for disturbance torques
due to actuator noise. Next, check the open loop response for disturbance torques at
locations on the structure where noise inputs are most likely, e.g., the alpha joint.
Modes strongly coupled to the disturbance input must be included in the KL model.
This will determine the size of the KL (reduced order) model. If, after all this is done,
the results are still unacceptable, then adding additional control elements should be
considered. The placement of the additional control element(s) is determined by the
node(s) with the largest modal amplitude(s) for the modes that remain excited by the

initial control system. The process is repeated until an acceptable control is achieved.
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APPENDIX A. SPACE STRUCTURE SIMULATION PROGRAM

This program simulates the dual keel space station described in Chapter 1 by im-
plementing the model described in Chapter IV. The control described in Chapter IV is
also simulated. For a detailed explanation of this program and its development see [Ref.
1].

C
C Koo dedeTotdevedede de ke e e e Yo e R e e e oo e de e dede e sk de e e e de e v de e e e e de e e e e
C Fedededed Space Structure Simulation Program Fedededede
C dereeseds Fedrdevest
C Fedededee By William J. Preston Fedlededede
C Feedededededededededevede e ve e e e de Yo e Y ve e Ao e e e e e Yo de e de el s e de e e e e e Yo e ek el
C
C
C Fedlrdede e de Yoo e d e s se e et e e e e v el e e e e e e e e e e ke e s e e e e e e e e
C dededededs VARIABLE DECLARATIONS Yedlerlevee
C denkdede e e e Yoo e vl e e v e e de v s e e sk T e e e e e e e s e Ve vl e e e sl e e e Ve Ve e ettt
C
EXTERNAL EXCMS,RICDSD
CHARACTER*6 NAM
CHARACTER**1 AGAIN,CORECT,RAGAIN
INTEGER NODE,MODE,KQ,EMODE,SMODE
INTEGER CT,CF,KA,LOOP,PRNT,MODAL,V,COUNT,PRNTG
INTEGER NF,NG,NH,NZ,I,K,M,CTADJ
I\TEGER IPVS(lOO) ITYPE(ZOO)
c - -- -- J-.J---- --'a-'- '4 '--LJ.- ) --‘-.'-J--’“e.l_~_J..'."fJ-.L.lr"‘.l‘-*-h-LJ.,L.L-L-L**J-*.L*
C REAL TOTCST RMODEN(7: 100)
C REAL*8 COSWlT SINW1T,COST,CNTCST,ENERGY ,RM
C -.':-.'::'::’:-.':-.':7'::‘r:’:v’:v’::’ﬂ'::‘::‘:-,’::'::’:7‘::‘::'c-.’:-.'::'.--.’:-.'r-.‘:-,’ Tededededede e deve e de ool
REAL RTOTAL,RMODEN(7:100)
REAL*8 PHII(2,2,100),GAMMA(2,100),EGT,GMA,WN,W1,X1T,X2T
REAL**8 PHI(188,188),B(188,3),BN(188,3),R(3,3),RR(3,3)
REAL*8 RINV(3,3),RRINV(3,3),X1(7:100),X2(7:100),MODEN(7: 100)
REAL*8 COSW1T,SINW1T,COST,CNTCST,ENERGY,TOTCST,RM
REAL*8 TCX,TCY,TCZ,DAMP,SAMPT,PI,SUM1,SUM2,8UM3,SUMC
REAL*8 TNX,TNY,TNZ,IMPX, IMPY,IMPZ,IMPLSX, IMPLSY,IMPLSZ
REAL LAMA(100),UGVEX(100,3),RNODE,RMODE ,MIN,TIME,SAMPTM
REAL UG69(100,3),0UG23(100,3),0UG655(100,3)
REAL*8 H(100,100),G(100,100),L(3,100),BT(3,100)
REAL*8 2(200,200),W(200,200),ER(200),F(100,100),EI(200)
REAL*8 SCALE(200),TEMP(100,3),TEMP1(3,100),WORK(100)
Cc Yesrerbdak sl dede e veveveab vl s e de Yo Fedb e e e e e vk v v de vk ok sk ab ke e e e st e e bbb e e e e ke
C
C Yool dededededo sk e e e st e de v ek e Yo s Fodk e sbe e de vk et s e vk e de s de s e e e e dede e sk e v e e e e ke e ok
c Yeorievese VARIABLE DEFINITIONS dedeveiede
C Fevedesedlederkdededevesedtvedeledede e vede vt e at de deveve v Yo sk e e de e de deve e s v vl dtdb sk sk sl e sk de e e e de v ek
c




sNoNoNeo oo Ro R Ro R X s Ko No R o P R Rv Ev A EvRoRo oo RoNololoRoNoNoNoRo oo RoNoNoRo o NoNoNo o o Ne!

]

LAMA = VECTOR OF THE SQUARE OF THE NATURAL FREQUENCIES
UGVEX = MODE POSITONS AND SLOPES OF THE NODAL POINTS

PHI = STATE TRANSITION MATRICIES FOR EACH MODE

GAMMA = INPUT TRANSITION MATRIX

A = DIAGONAL MATRIX CONSISTING OF PHI

B INPUT MATRIX OF GAMMA AND CONTROL NODE SLOPES

BN = NOISE INPUT MATRIX OF GAMMA AND NOISE NODE SLOPES
DAMP = DAMPING FACTCR

SAMPT = SAMPLING TIME

IMPLSE = IMPULSE INPUT FUNCTION

TCX, TCY, TCZ = CONTROL TORQUE VALUES

IMPX, IMPY, IMPZ = AXIS IMPULSE NOISE VALUES

ENERGY = SYSTEM ENERGY COST VALUE FOR A GIVEN POINT IN TIME
CNTCST = SYSTEM CONTROL COST VALUE FOR A GIVEN POINT IN TIME
COST = TOTAL SYSTEM COST VALUE FOR A GIVEN POINT IN TIME
TOTCST = SYSTEM COST SUMMED OVER ALL TIME

MIN = NUMBER OF MINUTES SYSTEM WILL BE OBSERVED

Tk ek SAMPLE OF SPACEN EXEC FILE Fedededesdedededodededededede

THIS FILE MUST BEGIN IN COLUMN 1 AND RUN WITH THE FOLLOWING
SEQUENCE FOR THE INITIAL RUN OF THE PROGRAM:

FORTVS2 SPACEN (COMPILES PROGRAM)
SPACEN (LOADS AND RUNS PROGRAM)

SUBSEQUENT PROGRAM RUNS CAN ELIMINATE "FORTVS2 SPACEN" IF NO
CHANGES HAVE BEEN MADE TO THE PROGRAM.

CP DEF STOR 2M

FI 4 DISK KLAMA OUTPUT B (PERM

FI 30 DISK X1 OUTPUT A (RECFM F BLOCK 80 PERM

FI 31 DISK MODENG SPACEN A (RECFM F BLOCK 80 PERM
FI 32 DISK TORQUE OUTPUT A (RECFM F BLOCK 80 PERM
FI 33 DISK ENERGY OUTPUT A (RECFM F BLOCK 80 PERM
FI 34 DISK MDECST OUTPUT A (RECFM F BLOCK 80 PERM
FI 35 DISK COUNT INPUT A (RECFM F BLOCK 80 PERM
FI 40 DISK UTILITY DATA A (RECFM F BLOCK 80 PER
FI 41 DISK RUN DATA A (RECFM F BLOCK 80 PERM

FI 42 DISK KUG69 OUTPUT A (RECFM F BLOCK 80 PERM
FI 43 DISK KUG23 OUTPUT A (RECFM F BLOCK 80 PERM
FI 44 DISK KUG55 OUTPUT A (RECFM F BLOCK 80 PERM
LOAD SPACEN

START * NOXUFLOW

Fededededededtibredradesededede st drrtdrdest e s dede e s ek e de e s deatd et s de v v ke de s b ek b ket

PI = 4.0D0 * ATAN(1.0DO0)

SAMPT = 0.0
DAMP = 0.0
MODAL = 0
IMPX = 0.0DO
IMPY = 0.0DO0
IMPZ = 0.0DO
NF = 100
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NG = 100
NH = 100
NZ = 200

desereveaksraoeak et
dikkd  NUMBER OF MINUTES THE SYSTEM WILL BE OBSERVED i
MIN = 120.0

etk s dederksbdedbab vk sb de oot v sk s de sk drab e de vl de e v ok et at e e vk e e v v sk e st sl de e e nke s e ok e o

Fededededk SET LENGTH OF MODAL MODEL oo
FeTedrvesedyabskfeddk sk v T sk dede b ook e dbab b bt ok e db e Y e e de etk Ao v b e e de ke e ke e e ve oot

MODAL = 56

Federtrbsededesk ekt de vkt vt s sk ey sk sk vt e de ek sk e e s e v e A vk e e ve v e e sk e e e e s

Fedrdkatse READ LAMA MATRIX Fedkskedke
sk srvest etk de e e e seab e veskde v b deab e v e e veve sk v vk ok e e e e v e e vk e e ek e sk e ek sk de ek

READ(4,1001) NAM
READ(4,1002)(LAMA(I),I=1,100)

P stk dedede s sl s yede sk e ek ok et v veab e e ab e e sk e sk ek de v sk e e v st e sk sk Yok s e e e ale e v e e sk

Fesreiess SCREEN INTERACTION e
FeTeTeveddlesk e el s e e v dk v s sk e S Yo s rt ol ke Y v de e s e e Yo st e v g abe sk ale e e e Yo v s e v sl e sl

T e veddrasedk STARTING MODE NUMBER Perbsk ek sbak s seakdbeakae
SMODE = 7

S ved e sl seved st NUMBER OF MODES TO SCAN Feverharseak bbbkt

MODE =5

EMODE = SMODE + MODE - 1

Fededevededededevedeede NOISE INPUT POSITION dedesededededededededeededede et
NODE = 55

AXIS =1

Fevedeseskdedertdeddedlese R MATRIX VALUE Fererkvbakvededbdeabaeab ek aole
RM = 1E-12

Fidideick® 01 FOR FULL SAMPLING TIME °.05 FOR REDUCED ‘s
SAMPT = 0.01

Fededeededfedde ook DAMPING FACTOR Fededededededededekdei ke
DAMP = 0.001D00

DO 75 I = 1,100

READ(42,1040) (UG69(I,K),K=1,3)
READ(43,1040) (UG23(I,K),K=1,3)
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65
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READ(44,1040) (UG55(I,K),K=1,3)
CONTINUE

Feredededea e dedededeaokseve

BEGIN RUN
DO 505 M = 1,3

WRITE
WRITE
WRITE
WRITE

(41,700)
(41,701)
(41,706) EMODE
(41,702) NODE
WRITE (41,703) RM
WRITE (41,704) SAMPT
WRITE (41,705) DAMP
WRITE (41,707) MIN
WRITE (41,708) MODAL

SMODE
MODE

ek vederese NOISE AXIS INPUT AND LOCATION

IF(AXIS. EQ. 1)THEN
IMPX = 1. 0DO/SAMPT
ELSEIF(AXIS. EQ. 2)THEN
IMPY = 1. 0D0/SAMPT
ELSEIF(AXIS. EQ. 3)THEN
IMPZ = 1.0D0/SAMPT
ELSEIF(AXIS. EQ. 4)THEN
IMPX 1. 0DO/SAMPT
IMPY 1. ODO/SAMPT
IMPZ 1. ODO/SAMPT
ENDIF

o

COUNT = 0

desedtesledlevedededsoy INITIALIZE MATRICIES
DO 40 I = 1,188
DO 45 J = 1,188
PHI(I,J) = 0.0
CONTINUE
CONTINUE

DO 60 I = 1,188
DO 65 J = 1,3
B(I,J) = 0.0
BN(I,J) = 0.0
CONTINUE
CONTINUE

DO 70 K = 7,1
X1(K) = 0.
X2(K) = 0.
MODEN(K) = 0.0
RMODEN(K) = 0.0

CONTINUE

00
0
0

Jededevede

BEGIN MAIN PROGRAM

45
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Sedrderbddtdededbdertd e e ot

HKedeesede




aaon

C

C

600

C

c

C

C

C

610

C

ek ESTABLISH A, B AND B''NOISE" MATRICIES dedededede
ey desk e YT T s e Yo Y Yo T e Y ey e e e Y Y v vk e Y e e Yo de e ek de ve e vk vk v vk e v v ak b ek ot e ok

DO 600 I = SMODE,MODAL
WN = DBLE(SQRT(LAMA(I)))
GMA = DAMP*WN/2.0

EGT = DEXP( -GMA*SAMPT)
W1 = DSQRT((WN**2)-( GMA**2))
COSW1T = DCOS(W1*SAMPT)
SINW1T = DSIN(W1¥*SAMPT)
IF(WN. EQ. 0)THEN
PHII(1,1,I) = EGT*COSW1T
PHII(1,2,I) = SAMPT
PHII(2,1,I) = 0
PHII(2,2,I) = EGT*COSW1T
GAMMA(1,I) = 0
GAMMA(2,I) = 0
ELSE
PHII(1,1,I) = EGT*(COSW1T + (GMA*(W1%¥*(-1)))*SINWLT)
PHII(1,2,I) = (W1%¥(-=1))*EGT*SINWIT
PHII(2,1,I) = -(WN¥*#2)%(W1¥¥*(=1))*EGT*SINWIT
PHII(2,2,I) = EGT*(COSW1T - (GMA*(W1¥¥(-1)))*SINWIT)
GAMMA(1,I) = (WN¥¥(-2))%(1. 0DO-EGT*(COSW1T+(GMA/W1)*SINWIT))
GAMMA(2,I) = (W1%*%(-1))*EGT*SINW1T
ENDIF
CONTINUE
V=1

DO 610 K = SMODE,MODAL

PHI(V,V) = PHII(1,1,K)
PHI(V,V+1) = PHII(1,2,K)
PHI(V+1,V) = PHII(2,1,K)
PHI(V+1,V+1) = PHII(2,2,K)
B(V,1) = GAMMA(1,K)*DBLE(UG69(K,1))
B(V,2) = GAMMA(1,K)*DBLE(UG69(K,2))
B(V,3) = GAMMA(1,K)*DBLE(UG69(K,3))
B(V+1,1) = GAMMA(2,K)*DBLE(UG69(K,1))
B(V+1,2) = GAMMA(2,K)*DBLE(UG69(K,2))
B(V+1,3) = GAMMA(2,K)*DBLE(UG69(K,3))
V = V42
CONTINUE

DO 605 I = 1,100

UGVEX(I,1) = 0.0

UGVEX(I,2) = 0.0
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UGVEX(I,3) = 0.0

IF(NODE. EQ. 23) THEN
UGVEX(I,1) = UG23(I,1)
UGVEX(I,2) = UG23(I,2)
UGVEX(I,3) = UG23(I,3)

ELSEIF(NODE. EQ. 55) THEN
UGVEX(I,1) = UGS55(I,1)
UGVEX(I,2) = UG55(I,2)
UGVEX(I,3) = UGS55(I,3)

ELSEIF(NODE.EQ. 69) THEN
UGVEX(I,1) = UG69(I,1)
UGVEX(I,2) = UG69(I,2)
UGVEX(I,3) = UG69(I,3)

ENDIF

CONTINUE

v=1

DO 620 K = SMODE,MODAL

BN(V,1) = GAMMA(1,K)*DBLE(UGVEX(K,1))
BN(V,2) = GAMMA(1,K)*DBLE(UGVEX(K,2))
BN(V,3) = GAMMA(1,K)*DBLE(UGVEX(K,3))
BN(V+1,1) = GAMMA(2,K)*DBLE(UGVEX(K,1))
BN(V+1,2) = GAMMA(2,K)*DBLE(UGVEX(K,2))
BN(V+1,3) = GAMMA(2,K)*DBLE(UGVEX(K,3))
V = V+2

CONTINUE

CONTINUE

wleele nfoate ulecleals ol u'onfenty
TITITITIINTITIIIITNNY

ESTABLISH H, F AND R MATRICIES

DO 50 I = 1,NH

DO 55 J =
H(I,J)
F(I,J)
G(I,J)

IF(I.LE. 3)THEN
0

L(I,
ENDIF
CONTINUE
CONTINUE

1,N

i nu

H
0.0
0.0
0.0
)TH
J) =0

DO 611 =1,3

DO 66 J =
R(I,

1,3
J)y =10.0

RINV(I,J) = 0.0

CONTINUE
CONTINUE
KQ =1

Fededededevededodede

DO 80 K = SMODE,EMODE
H(KQ,KQ) = DBLE(LAMA(K))
H(KQ+1,KQ+1) = 1.0D0O
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130

140

104
103

KQ = KQ+2
CONTINUE

K=90
DO 85 K = 1,3

R(K,K) = RM
RINV(K,K) = 1.0DO/RM
CONTINUE

DO 88 I = 1,2*MODE
DO 89 J = 1,2*MODE
F(I,J) = PHI(I,J)
CONTINUE
CONTINUE

#*kkik  COMPUTE G MATRIX AS NEEDED BY RICDSD SUBR edededek
CALL MATRAN(B,188,2*MODE,3,BT,3)
CALL MATMUL(B,188,2*MODE,3,RINV,3,3,TEMP,NH)

CALL MATMUL(TEMP,NH,2*MODE, 3,BT, 3,2*MODE,G,NG)

*’l .L-.J‘J J J J J ‘--J J J J 7’ (J J‘J quhi-.l--'-.k’l‘;....' 'C"‘J o uts: J-J.’ Jf" J"""'***"‘"f"f”f*’a’(7f"f’f

BEGIN RICCATI GAIN CALCULATIONS

fedededededeedededededededevededededededevevedededededededodede el e dededededededededededev v de e dedededededede e de

CALL RICDSD(NF,NG,NH,NZ,2*MODE,4*MODE,F,G,H,Z,W,ER,EI,WORK,
+ SCALE,ITYPE,IPVS)

WRITE(41,%) ' '
WRITE (41,130)
FORMAT (/' THE CLOSED LOOP EIGENVALUES ARE:'/)
DO 140 I = 1,2*MODE
WRITE (41,*) ER(I),EI(I)
CONTINUE
WRITE (41,150) WORK(1)
FORMAT (/' CONDITION ESTIMATE IS:',D26.18)

JededededededededeNe e COMPUTE GAIN MATRIX L Fedededededefedededededede
CALL MATMUL(BT,3,3,2*MODE,H,NH, 2*MODE,TEMP1, 3)
CALL MATMUL(TEMP1,3,3,2*MODE,B,188,3,RR,3)
DO 103 I =1,3
DO 104 J=1,3
RR(I,J)=R(I,J)+RR(I,J)
CONTINUE
CONTINUE
CALL DLINDS(3,RR,3,RRINV,3)

CALL MATMUL(RRINV,3,3,3,TEMP1,3,2*MODE,BT, 3)
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CALL MATM"L(BT,3,3,2*MODE,PHI,188,2*MODE,L,3)

C
WRITE(41,*) ' '
WRITE(41,*%) ' GAIN MATRIX L'
WRITE(&41,*) ' '
WRITE(41,%) ' ROW 1 ROW 2 ROW 3'
DO 9155 I=1,2*MODE
WRITE(41,1040) (L(J,1),J=1,3)
9155 CONTINUE
WRITE(&41,%) ' '
C
C Fedfede s e dede e e ekt dkalr e e s ek e e vtk sk ab e s e St e de b b db e e de e e de e dede e v e e sk e sbesbeae e
C e COMPUTATION OF TORQUES AND COSTS dedeciee
C Ferrdab s drvest i dedededbaldle vl e e de e destab dedkabab e b v Yo de v db vt sk e sk sk ek b e de e e de e e e e e ateateske
C
9000 COUNT =0
TOTCST = 0.0D0
TIME = 0.0
C
C e vlesk ok Yot e s o vedtat skl e s s db o vk sk b ak sk sk s e e de e vk st de v e e sk dede de v ve e e e vl s sk abe e ke e s e ook
c sk SETS LOOP FOR THE NUMBER OF ITERATIONS NECESSARY  deieies
c diciesk TO OBSERVE THE SYSTEM FOR DESIRED LENGTH OF TIME  desedeiic
c Feedededrededtdededededdrdede vk v ek i v e el b nab e b sk sk e st e ek
C
LOOP = INT((MIN*60.0)/SAMPT)
PRNT = INT(((MIN*60.0)/SAMPT)/300.0)
PRNTG = INT(((MIN*60.0)/SAMPT)/1000.0)
C
DO 200 N = 0, LOOP
TIME = DBLE(N)*SAMPT
C
IF(N.EQ. O)THEN
IMPLSX = IMPX
IMPLSY = IMPY
IMPLSZ = IMPZ
ELSE
IMPLSX = 0.0DO
IMPLSY = 0.0DO
IMPLSZ = 0.0DO
ENDIF
C
C VededededeedededededeededededededededededodedededededeTedede e dede dedededededede e dede dedededede e denededede e de e e
C FeseSeveTeyedeyedese CONTROL TORQUE EQUATIONS Fevederrskodt el
C Fedededededededododedededededesede e Fededede e dedededededededetedodededededededededodeSedededededededededededededede e
C
SUM1 = 0.0D0
SUM2 = 0.0DO
SUM3 = 0.0D0
C
DO 210 CT = 1, MODE
CTADJ = CT + (SMODE - 1)
SUM1 = SUM1 + L(1,2%*CT-1)*X1(CTADJ) + L(1,2*CT)*X2(CTADJ)
SUM2 = SUM2 + L(2,2*CT-1)*X1(CTADJ) + L(2,2*CT)*X2(CTADJ)
SUM3 = SUM3 + L(3,2*CT-1)%X1(CTADJ) + L(3,2*CT)*X2(CTADJ)
210 CONTINUE
C
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Fededededesedededededed EVALUATION AT ZERO CONTROL Fedededededededededede
IF(M. EQ. 1)THEN

TCX = 0.0D0
TCY = 0.0DO
TCZ = 0.0D0
ELSE
TCX = SUM1*(~1.0D0)
TCY = SUM2*(-1.0D0)
TCZ = SUM3*(~1.0D0)
ENDIF

IF(N. EQ. 0)THEN
WRITE (32,*) 'IMPULSE X AXIS, IMPULSE Y AXIS, IMPULSE Z AXIS'
WRITE (32,%) ' '
WRITE (32,1040) IMPLSX, IMPLSY, IMPLSZ
WRITE (32,*%) ' '
WRITE (32,*) 'CONTROL TORQUES TCX, TCY, TCZ'
WRITE (32,*%) ' '
ENDIF

IF (N.LE.50) THEN
WRITE (32,2000) TIME, TCX, TCY, TCZ
ENDIF

IF (MOD(N,PRNTG).EQ.0) THEN
WRITE (32,2000) TIME, TCX, TCY, TCZ
ENDIF

IF (N.LE.20) THEN
WRITE(30,1035) IIME,X1(1),X1(5),X1(10),X2(15),X1(20)
WRITE(31,1035) TIME,X2(1),X2(5),X2(10),X2(15),X2(20)
ENDIF
1F (M.EQ.1) THEN
IF (MOD(N,PRNTG).EQ.0) THEN
WRITE(30,1036) TIME,X1(9),X1(10),X1(11),X1(12),X1(13),X1(14)
WRITE(30,1036) TIME,X1(1),X1(4),X1(14),X1(24),X1(34),X1(44)
WRITE(31,1035) TIME,X2(1),X2(5),X2(10),X2(15),X2(20)
ENDIF
ELSE
IF (MOD(N,PRNT).EQ.0) THEN
WRITE(30,1036) TIME,X1(1),X1(4),X1(24),X1(44),X1(74),X1(94)
WRITE(30,1036) TIME,X1(1),X1(4),X1(14),X1(24),X1(34),X1(44)
WRITE(31,1035) TIME,X2(1),X2(5),X2(10),X2(15),X2(20)
ENDIF
ENDIF

IF (MOD(N,PRNTG).EQ.0) THEN
COUNT = COUNT+1
ENDIF

Kot dodedbidode st ies et At st de kv et de b e et dedese b e e ek e e ekt e Aok

Fedededededededs SYSTEM COST FUNCTION CALCULATION sedededededeieo
Feveredede e vedededsbal s dede s ve vk dlalede deat sk v v e vk v vk db sk de sk e e deat e e ve stk sk e s ek e steok
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235

666

SUMC = 0
ENERGY = 0. 0DO
0

. 0DO

CNTCST
COST =

0. 0DO
. 0DO

DO 230 CF = 7,MODAL
MODEN(CF) = MODEN(CF)+(X1(CF)#*¥2)*LAMA(CF)+X2(CF)¥¥2
SUMC = SUMC+(X1(CF)¥**2)*LAMA(CF)+X2(CF)%*¥2

CONTINUE
ENERGY = SUMC
CNTCST = (TCX*¥#2)}*RM+(TCY**2)*RM+(TCZ**2)*RM

COST = ENERGY + CNTCST
TOTCST = TOTCST + COST

IF (MOD(N,PRNTG).EQ.0) THEN
WRITE(33,2000) TIME,ENERGY,CNTCST,COST
ENDIF
IF(N. GE. (LOOP=50) )THEN
WRITE (34,3002) MODE,TOTCST
ENDIF

el rab e Yevede e deve skt dedeakak v v v de v se st ve st e sk e sk sk e s e de v e vk ok abaedle sk e e e e e e e v e e e

FeokdevededYee STATE UPDATE EQUATIONS Fededledededektdede
2k desrae ok deve s e e vk ek ve v T e v e e e e dededk b dededeve sk de st e s e e dede vk de v ve e e e e et

DO 220 KA = 7,MODAL
K = KA-6

X1T=PHII(1,1,KA)*X1(KA)+PHII(1,2,KA)*X2(KA)+B((2*K-1),1)*TCX+
B((2*K-1),2)*TCY+B((2*K-1),3)*TCZ+BN( (2*K-1),1)*IMPLSX+

+ BN((2%K-1),2)*IMPLSY+BN((2*K-1),3)*IMPLSZ

X2T=PHII(2,1,KA)*X1(KA)+PHII(2,2,KA)*X2(KA)+B(2*K,1)*TCX+

+ B(2*K,2)*TCY+B(2*K,3)*TCZ+BN(2*K, 1)*IMPLSX+BN(2*K,2)*
+ IMPLSY+BN(2%K,3)*IMPLSZ

X1(KA)
X2(KA)

X1T
X2T

CONTINUE
CONTINUE

WRITE (35,3000) COUNT
RTOTAL = TOTCST

WRITE (34,3002) MODE,RTOTAL
WRITE (34,3002) MODE,TOTCST

PO 235 K = 7,MODAL

RMODEN(K) = MODEN(K)

WRITE (31,3002) K, RMODEN(K)
CONTINUE

CONTINUE
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702

704

705

706

707

708

1001
1002
1004
1005
1008
1010
1035
1036
1040
1050
2000
2001
3000

IF(M.EQ. 1)THEN
MODE=10
EMODE=16

ELSEIF(M. EQ. 2)THEN
MODE=15
EMODE=21

ELSEIF(M. EQ. 2)THEN
MODE=20
EMODE=26

ELSEIF(M. EQ. 2)THEN
MODE=25
EMODE=31

ELSEIF(M. EQ. 3)THEN
MODE=30
EMODE=36

ELSEIF(M. EQ. 4)THEN
MODE=35
EMODE=41

IF(M.EQ. 1)THEN
MODE=40
EMODE=46

ELSEIF(M. EQ. 2)THEN
MODE=45
EMODE=351

ELSEIF(M. EQ. 3)THEN
MODE=50
EMODE=56

ENDIF
CONTINUE

dJededededededen Fedetede e feede e dedede Fe e de fe e e ek e ek sk e de ke e s deob s de stk db e sk e ake e e e ok

Vededeede FORMAT STATEMENTS Fededededs
Sededr Y vere s vede T Yoo e e s s ok s e Yo Yo v e e T e Yo e dea ok dk v e de s ket st e e e s skl de s atenle e e

FORMAT
FORMAT

(' ','STARTING MODE NUMBER: ',I2)

(' ','NUMBER OF MODES SCANNED: ',I2)
FORMAT (' '.'NNTSFE INPUT NODE: ',I3)
FORMAT (' ','INITIAL R VALUE: ',E12.4)
FORMAT (' ','SAMPLING TIME: ',E1Z.4)
FORMAT (' ','DAMPING FACTOR: ',E12.4)
FORMAT (' ','LAST CONTROLLED MODE: ',I2)
FORMAT (' ','OBSERVATION TIME: ',F5.1,' MINUTES')
FORMAT (' ','SIZE OF MODAL MODEL: ',I3,' MODES')
FORMAT( 1X,A6)
FORMAT( 1X,8E15. 8)
FORMAT( 1X,//)
FORMAT( 1X,60X,E11.5)
roRAT(AL) 1)

1

FORMAT(' ',F7.2,2X,5(E12.6,2X))
FORMAT(' ',F7.2,1%X,6(E11.5,1X))
FORMAT(' :,3(E15.8,5X))
FORMAT(' ',4(E12.6,2X))
FORMAT(1X,F7.2,3X,3(E15. 8,3X))
FORMAT(' ',T5,E15.8)
FORMAT(14)




3001
3002
C
599

Qoo

670

660
650

[oXeNeNOXe

690
680

FORMAT(F7.2,2X,E12.5)
FORMAT(I3,2X,E12.5)

STOP
END

Feeseledrdrrbrle e dedlrdedt Teak vk ok s v e Se sk o ek ok b ae b Ao vk rb vk e de vt de e e e ok e vk sk s e ok e b e e ke

SUBROUTINE TO MATRIX MULTIPLY
Fesr vk dererbderese st dbubdese e s e sk o e skea e ve sk b ek ak e sk e e e vk ek e e rb o e db e e v dle e ek e e e o

SUBROUTINE MATMUL(M1,LD1,R1,C1,M2,1LD2,C2,MP,LD3)
INTEGER R1,€1,C2,LD1,LD2,LD3
REAL*8 M1(LD1,1),M2(LD2,1),MP(LD3,1),S8UM

DO 650 I = 1,R1
DO 660 J = 1,C2
SUM = 0.0D0
DO 670 K = 1,C1
SUM = SUM+M1(I,K)*M2(K,J)

CONTINUE
MP(I,J) = SUM
CONTINUE
CONTINUE
RETURN
END

Fededesbar e v v e Yo e ek e e a e el ek de de sk Yok Yok e e e el e sk et ek e vk e skl e ek ek
SUBROUTINE TO TRANSPOSE A MATRIX

Yok dleskledr v e e db ek e dle st e v v vk v el dle e S v de v v de v v sk a vk sk ek de s v v vk e de st s ake sk e e e o

SUBROUTINE MATRAN(MX,LDX,R1,C1,MT,LDT)
INTEGER R1,C1,I,J,LDX,LDT
REAL*8 MX(LDX,1),MT(LDT,1)

DO 680 I = 1,R1
DO 690 J = 1,C1
MT(J,I) = MX(I,J)
CONTINUE
CONTINUE
RETURN
END




APPENDIX B. KARHUNEN-LOEVE MODE PROGRAM

This program computes the Karhunen-Loeve mode shapes as discussed in Chapter
IV. Subroutine GENRAA is called to generate the covariance matrix of the modal co-
ordinates, RAA =E[a(t)a™(t)] . One subroutine from the IMSL math library
(DMRRRR) is used for matrix multiplication and two EISPACK subroutines are used
to compute the eigenvalues and eigenvectors of the covariance matrix.

The subroutine GENRAA as noted above generates the covariance matrix, RAA,
of the modal coordinates of the space station discussed in Chapter I. The algorithm:

¢ Computes the natural frequency, damping coefficient, y, and damped frequency of
each mode

e Computes the variances and covariances based on these parameters as given by
equations 19, 20, 21

The KL mode shapes are found by solving the eigenvalue problem, equation 12.

RAA*Q ¢ =/ ¢ (33)

where the matrix Q is:
2 2 2
gl @7 O Jos O wse 0 <
Q—dld:[[o I:H:O I:I....,[ o 1:” (36)

e / is the eigenvalue of the product, RAA * Q

and

® ¢ represents the orthonormal eigenvectors

RAA * Q is not a symmetric matrix so the eigenvalue problem is changed to:

[Q'*RAAQ] [Q'?¢]=4[Q"*¢] (37)
Let
n=Q *pand¢=Q "'y (38)
and finally:
[Q*RAAQ  Jn=1in (39)
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The EISPACK routines for symmetric matrices are used to solve the eigenvalue prob-

lem. equation 39, and equation 38 is used to compute the KL mode shapes.
This program is run by executing the following EXEC file:
e FORTVS2 KLMODES2
e FI 4 DISK THESIS INPUT B (PERM
e FI 6 DISK RAA OUTPUT T (PERM
e FI 8 DISK EIGVEC OUTPUT T (PERM
e FI 10 DISK EIGVAL OUTPUT T (PERM
e FI109 DISK EIGEN ERROR B (PERM
e FI 12 DISK NATMODES D001 B (PERM
e FI 13 DISK KLAMAQ OUTPUT B (PERM
e FI 14 DISK RAA OUTPUT (PERM
e FI117 DISK NERRO0OO1 DATA A (PERM
e P DEF STOR 2M
e EXEC MATHPACK EISPACK
e EXEC TDISK 3 DIS
e LOAD KLMODES2 (START

PROGRAM KLMODE
Fedededededededededelt et Variable definit ionsteredededededbdedededidedededrddedrdrdrddededededdrdeledeobnedt

* lama = vector of natural frequencies

* ugvex= matrix of the modal amplitudes and modal slopes %
¥ natmod=vector containing the natural mode shapes that correspond *
¥ to the KL mode shapes ¥
3 klama=vector of natural frequencies ordered according to th KL *
* mode shapes %
* klmod=vector containing the largest eigenvectors in column of the *
¥ eigenvector matrix eigenvec *
Fededededededevedededodededededededededeve e dedededede e Ve e de v e e Je e vedededede e e drdedeso e Fe e e e e e e e de e e e e e e de e Yo

CHARACTER*6 NAM

DOUBLE PRECISION LAMA(100,1),UGVEX(684,100),D(100),E(100)
DOUBLE PRECISION KIMOD(100),Y,N1,Q(100,100)

DOUBLE PRECISION GAMA,DAMP,W(50),L(50),M(50),B2(1,50),Q2(100,100)
DOUBLE PRECISION K(1,50),A,B,C,COEF,RAA(100,100),APB,APC,TEMP1
DOUBLE PRECISION TEMP2,TEMP3,TEMP4,TEMPS,TEMP6,Q2RAA(100,100)
DOUBLE PRECISION EIGVEC(100,100),Z(100,100),RAAQ(100,100)
DOUBLE PRECISION Q2RQ2(100,100),Q2INV(100,100),KLAMA(50)
INTEGER KK,LL,ZZ,MODR(100),MODC(100) ,MM,NATMOD( 100) ,NUM

DO 160 I=1,100

DO 170 J=1,100

Q2(1,J)=0.0D00

Q2INV(I,J)=0.0D00

RAA(I,J)=0.0D00

55




170
160

Q(I,J)=0.0D00

CONTINUE

CONTINUE

READ(4,1001) NAM

READ(4,1002) (LAMA(I,1),I=1,100)
READ(4,1001) NAM

READ(4,1002) ((UGVEX(I,J),I=1,684),J=1,100)

C NODE IS THE DISTURBANCE INPUT LOCATION
C AND DILOC IS THE COMPUTED LOCATION OF THE MODAL SLOPE IN UGVEX

NODE=69
DISLOC = 4+6*(NODE-1)

C NUMODE IS THE NUMBER OF THE LAST MODE CONSIDERED

150

15

NUMODE = 56
CALL GENRAA(NUMODE,DISLOC,LAMA,UGVEX,W,L,M,B2,K,RAA)
WRITE(16,1005)W(1),L(1),M(1),B2(1,1),K(1,1)

LL=2

KK=1

DO 150 J=7,NUMODE

Q2(KK,KK)=DSQRT(LAMA(J,1))

Q2(LL,LL)=1. 0D0O

Q2INV(KK,KK)=1/Q2(KK,KK)

Q2INV(LL,LL)=1. 0DOO

KK=KK+2

LL=LL+2

CONTINUE

CALL DMRRRR(100,100,Q2,100,100,100,Q2,100,100,100,Q,100)
CALL DMRRRR(100,100,RAA,100,100,100,Q,100,100,100,RAAQ,100)
DO 15 I=1,100

WRITE(14,1007) RAA(I,I)

WRITE(15,1007) Q2(I,I)

CONTINUE

CALL DMRRRR(100,100,Q2,100,100,100,RAA,100,100,100,Q2RAA, 100)
CALL DMRRRR(100,100,Q2RAA,100,100,100,Q2,100,100,100,Q2RQ2,100)
CALL TRED2(100,100,Q2RQ2,D,E,Z)

CALL TQL2(100,100,D,E,Z,IERR)

IF( IERR. NE. 0)THEN

WRITE(9,*) 'ERROR=',16

PAUSE

ENDIF

CALL DMRRRR(100,100,Q2INV,100,100,100,Z,100,100,100,EIGVEC,100)
WRITE(6,1005)((RAA(I,J), J=1,100),I=1,100)
WRITE(8,1006)((EIGVEC(I,J),J=1,100),I=1,100)
WRITE(10,1007)(D(I),I=1,100)

MM=1

DO 10 I=100,1,-1

KLMOD(M¥)=0. 0DOO

DO 20 J=1,100

IF(DABS(KLMOD(MM)). LT. DABS(=IGVEC(J,1)))THEN
KLMOD(MM)=EIGVEC(J,I)

MODR(MM)=I

MODC(MM)=J

Y=(DBLE(MODC(MM)))/2. 0DOO

I1=INT(Y)

N1=Y-(DBLE(I1))

IF(DABS(N1).NE. 0. 0DOO)THEN

NATMOD(MM)=(MODC(MM)+1)/2 + 6
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10

30

180

11
100
200
1001
1002
1005
1006
1007

100

110

ELSE

NATMOD(MM)=MODC(MM)/2 + 6

ENDIF

ENDIF

CONTINUE

MM=MM+1

CONTINUE

DO 30 I=1,100

WRITE(12,100) MODR(I),MODC(I),NATMOD(I),KLMOD(I)

CONTINUE

22=50

DO 180 I=1,100,2

KLAMA{ 2Z)=LAMA(NATMOD(I),1)

22=27-1

CONTINUE

WRITE(13,1005)(KLAMA(I),I=1,50)

NUM=7

DO 11 I=1,99,2

IF(DABS(KLMOD(I)). GT. DABS(KLMOD( I+1)))THEN

WRITE(17,200) NUM,DSQRT(2%*(1-DABS(KLMOD(I))))

ELSE

WRITE(17,200) NUM,DSQRT(2%(1-DABS(KLMOD(I+1))))

ENDIF

NUM=NUM+1

CONTINUE

FORMAT(1X,13,2X,13,2X,13,2X,E15.8)

FORMAT(1X,12,2X,E15.8)

FORMAT( 1X,A6)

FORMAT(1X,8E15. 8)

FORMAT(1X,5E15.8//)

FORMAT(1X,SE15.8//)

FORMAT(1X,5E15.8//)

STOP

END

SUBROUTINE GENRAA (NUMODE,DISLOC,LAMA,UGVEX,W,L,M,B2,K,RAA)

DOUBLE PRECISION LAMA(100,1),UGVEX(684,100)

DOUBLE PRECISION GAMA,DAMP,W(50),L(50),M(50),B2(1,50)

DOUBLE PRECISION K(1,50),A,B,C,COEF,RAA(100,100),APB,APC,TEMP1

DOUBLE PRECISION TEMP2,TEMP3,TEMP4,TEMPS,TEMP6

DAMP=0. 001D00

GAMA=DAMP/2. 0DOO

DO 100 MODE=7,NUMODE

W(MODE -6)=DSQRT(LAMA (MODE,1))

L(MODE -6 )=W(MODE -6 ) *DSQRT( 1. 0DOO-GAMA*GAMA)

M(MGDE -6 )=GAMA*W(MODE-6)

CONTINUE
DO 110 J=7,NUMODE
B2(1,J-6)=UGVEX(DISLOC+4*(J-1),J)
K(1,J-6)=B2(1,J-6)/L(J-6)
K(1,J-6)=UGVEX(DISLOC,J)/L(J-6)
CONTINUE

DO 130 I=1,50

DO 140 J=1,50

A=M(1)+M(J)

B=L(I)-L(J)

C=L( I)+L(J)
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140
130

COEF=K(1,I)*K(1,J)

APB=2%(A*A+B*B)

APC=2(A*A+C*C)

RAA(2%I-1,2%J-1)=COEF*(A/APB-A/APC)
TEMP1=L(J)*B/APB+L(J)*C/APC

TEMP2=M(J)*A/APB-A*M(J)/APC

RAA(2*1-1,2*J)=COEF-**( TEMP1-TEMP2)
TEMP3=(L(I)*L(J)*A-L(I)*M(J)*B=-L(I)*M(I)*B+M(I)*M(J)*A)/APB
TEMP4=(L(I)*L(J)*A-L(I)*M(J)*C-L(I)*M(I)*C-M(I)*M(J)*A)/APC
RAA(2*1,2%J)=COEF+*( TEMP3+TEMP4)

TEMP5=L(1)*C/APC-L(I)*B/APB

TEMP6=M(I)*A/APB-M(I)*A/APC

RAA(2%1,2*%J-1)=COEF*( TEMP5-TEMP6)

CONTINUE

CONTINUE

RETURN

END
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